Guido Uguzzoni

Researcher at Gen&Chem team - BGE - IRIG - CEA-Grenoble.

prof_pic.jpg

IRIG CEA-Grenoble, bâtC3

17, rue des Martyrs

38054 Grenoble Cedex 9 France

My research focuses on developing AI methods for molecular biology and protein design, with a focus on medical applications. I work at the intersection of machine learning, statistical physics, and computational biology, using deep sequencing data to train AI models that generate optimized biomolecules. My research combines fundamental work with practical applications. I collaborate with experimental groups to design specific antibodies, cancer-targeting peptides, and viral capsids.

By applying AI to molecular biology, I am committed to creating data-driven solutions that accelerate the discovery and optimization of biomolecules for medical purposes.

news

May 10, 2025

PhD offer

Noise modeling and machine learning for protein fitness landscapes: application to multi-specific antibody design

Etablissement Université Grenoble Alpes
École doctorale ISCE - Ingénierie pour la Santé la Cognition et l’Environnement
Spécialité MBS - Modèles, méthodes et algorithmes en biologie, santé et environnement
Unité de recherche BGE - Laboratoire Biosciences et bioingénierie pour la Santé Encadrement de la thèse Christophe BATTAIL
Co-Encadrant Guido UGUZZONI, Jorge FERNANDEZ DE COSSIO DIAZ (IPhT) Laboratoire Biosciences et bioingénierie pour la santé - IRIG - CEA · Grenoble (France) Début de la thèse le 1 octobre 2025
Date limite de candidature (à 23h59) 23 mai 2025 Mots clés Biologie computationnelle, Intelligence artificielle, Modélisation statistique Computational Biology, Artificial Intelligence, Statistical modeling Noise modeling and machine learning for protein fitness landscapes: application to multi-specific antibody design
Nov 15, 2024

Stage M2 :sparkles:

6 mois, mars 2025 Laboratoire Biosciences et bioingénierie pour la santé - IRIG - CEA · Grenoble (France) Modèles d’Intelligence Artificielle pour la génération de séquences de protéines - sfbi
Nov 10, 2024

New manuscript in PLoS Computational Biology

Inference and design of antibody specificity: From experiments to models and back

selected publications

  1. Large-scale identification of coevolution signals across homo-oligomeric protein interfaces by direct coupling analysis
    Guido Uguzzoni, Shalini John Lovis, Francesco Oteri, and 3 more authors
    Proceedings of the National Academy of Sciences, 2017
  2. Efficient generative modeling of protein sequences using simple autoregressive models
    Jeanne Trinquier, Guido Uguzzoni, Andrea Pagnani, and 2 more authors
    Nature communications, 2021
  3. Inference and design of antibody specificity: from experiments to models and back
    Jorge Fernandez-de-Cossio-Diaz, Guido Uguzzoni, Kévin Ricard, and 4 more authors
    PLOS Computational Biology, 2024