Guido Uguzzoni
Researcher at Gen&Chem team - BGE - IRIG - CEA-Grenoble.

IRIG CEA-Grenoble, bâtC3
17, rue des Martyrs
38054 Grenoble Cedex 9 France
My research focuses on developing AI methods for molecular biology and protein design, with a focus on medical applications. I work at the intersection of machine learning, statistical physics, and computational biology, using deep sequencing data to train AI models that generate optimized biomolecules. My research combines fundamental work with practical applications. I collaborate with experimental groups to design specific antibodies, cancer-targeting peptides, and viral capsids.
By applying AI to molecular biology, I am committed to creating data-driven solutions that accelerate the discovery and optimization of biomolecules for medical purposes.
news
May 10, 2025 | PhD offerNoise modeling and machine learning for protein fitness landscapes: application to multi-specific antibody designEtablissement Université Grenoble AlpesÉcole doctorale ISCE - Ingénierie pour la Santé la Cognition et l’Environnement Spécialité MBS - Modèles, méthodes et algorithmes en biologie, santé et environnement Unité de recherche BGE - Laboratoire Biosciences et bioingénierie pour la Santé Encadrement de la thèse Christophe BATTAIL Co-Encadrant Guido UGUZZONI, Jorge FERNANDEZ DE COSSIO DIAZ (IPhT) Laboratoire Biosciences et bioingénierie pour la santé - IRIG - CEA · Grenoble (France) Début de la thèse le 1 octobre 2025 Date limite de candidature (à 23h59) 23 mai 2025 Mots clés Biologie computationnelle, Intelligence artificielle, Modélisation statistique Computational Biology, Artificial Intelligence, Statistical modeling Noise modeling and machine learning for protein fitness landscapes: application to multi-specific antibody design |
---|---|
Nov 15, 2024 | Stage M2 6 mois, mars 2025 Laboratoire Biosciences et bioingénierie pour la santé - IRIG - CEA · Grenoble (France) Modèles d’Intelligence Artificielle pour la génération de séquences de protéines - sfbi |
Nov 10, 2024 | New manuscript in PLoS Computational BiologyInference and design of antibody specificity: From experiments to models and back |